
1

Cheat Sheet: Eclipse Vert.x

Table of Contents

1. Introduction

Eclipse Vert.x is a toolkit to build reactive and distributed systems. Application using Vert.x
are fast, responsive, resilient and elastic. Vert.x is incredibly flexible - whether it’s network
utilities, modern web applications, microservices, or a full blown back-end message-bus
application, Vert.x is a great fit.

Vert.x is event driven and non blocking. This means your app can handle a lot of
concurrency using a small number of threads. Vert.x applications run on top of the Java
Virtual Machine but can be implemented in many language such as Java, JavaScript, Groovy,
Ruby and Ceylon. Vert.x provides idiomatic APIs for every supported language.
 Vert.x is not a restrictive framework or container, it gives you useful bricks and let you
create your app the way you want to.

1.A Reactive systems

Applications developed with Vert.x are reactive. The
Reactive Manifesto (http://reactivemanifesto.org) defines a
reactive application as having four key properties:
 - Use asynchronous message-passing
 - Elastic
 - Resilient
 - Responsive

 Components forming your Vert.x application interact using asynchronous message pass-
ing regardless of whether these components are co-located or distributed. Each component
reacts to the received message by using an asynchronous non-blocking development model.

1. Introduction

1.A Reactive Systems

1.B Programing with Vert.x

2. Create a new Vert.x application

2.A Create a Vert.x application

with Apache Maven

2.B Create a Vert.x application

with Gradle

2.C Create a Vert.x application

with the Vert.x CLI

3. Verticles

3.A Creating a verticle

3.B Deploying verticles

programmatically

3.C Configuring verticles

1

1

2

2

3

3

3

4

4

5

5

6

6

6

7

8

8

8

9

10

10

10

11

12

13

13

4. Timer and Periodic Tasks

5. HTTP

5.A HTTP Server

5.B HTTP Client

6. EventBus

6.A Point to Point

6.B Publish/Subscribe

6.C Request-Response

6.D Delivery Options

7. Executing blocking code

7.A Execute blocking construct

7.B Worker verticles

8. Executing Vert.X applications

9. Further learning

10. About the author

Responsive

ResilientElastic

Message-driven

http://developers.redhat.com/
http://reactivemanifesto.org

2

 Vert.x applications are largely event driven, this means that when things happen in Vert.x
that you are interested in, Vert.x notifies you by sending events. You handle these events by
providing handlers to the Vert.x APIs. For example, to receive an HTTP request event:

server.requestHandler(request -> {
 // This handler will be called every time an HTTP request is
 // received at the server
 request.response().end(“hello world”);
});

 With very few exceptions, none of the APIs in Vert.x block the calling thread. If a result can
be provided immediately, it will be returned; otherwise, you will usually provide a Handler to
receive events some time later.

 That means you can handle a highly concurrent work load using a small number of threads.
In most cases Vert.x calls your handlers using a thread called an event loop. Vert.x APIs are
non blocking and won’t block the event loop, but that’s not much help if you block the event
loop yourself in a handler, hence the golden rule: Don’t block the event loop. Because noth-
ing blocks, an event loop can deliver a huge quantity of events in a short amount of time. This
is called the Reactor pattern.

 In a standard reactor implementation there is a single event loop thread which runs around
in a loop delivering all events to all handlers as they arrive. The trouble with a single thread
is it can only run on a single core at any one time. Vert.x works differently here. Instead of a
single event loop, each Vertx instance maintains several event loops. This pattern is called
Multi-Reactor Pattern.

1.B Programming with Vert.x

2. Create a new Vert.x application

 There are many ways to create a Vert.x application, giving you a great freedom to use your
favorite tool. As Vert.x is a toolkit, it can also be embedded in your Spring or JavaEE applica-
tion too. In this cheat sheet, we will demonstrate three ways to create projects with Apache
Maven, Gradle, and the vertx CLI.

This allows the application to more effectively share resources by doing work only in re-
sponse to outside messages.

 Vert.x applications are also elastic, meaning they react to increasing load well, because the
architecture highly concurrent and distributed.

 Vert.x applications are resilient, treating failure as a first-class citizen --- it can face failures,
isolate them, and implement recovery strategies easily.

 The final property, responsive, means the application is real-time and engaging. It continues
to provide its service in a timely-fashion even when the system is facing failures or peak
of demand.

3

2.B Create a Vert.x application with Gradle

git clone https://github.com/vert-x3/
vertx-gradle-starter.git PROJECT_NAME
cd PROJECT_NAME
./gradlew run

./gradlew shadowJar

Add the dependency in the gradle.project
file

Import the project as a Gradle project in your
favorite IDE

Generate and Run
It generates the project structure and start
the application in redeploy mode: your
changes recompile and restart the applica-
tion. The
started application is accessible
from http://localhost:8080

Package
An executable fat jar is created in the
build/libs directory.

Dependency management
You need to restart gradlew to reflect the changes

IDE support

Add the dependency in the pom.xml file Dependency management
Add the dependency in the pom.xml file

IDE support

Import the project as a Maven project in your
favorite IDE

mvn package Package
An executable fat jar is created in the target
directory.

2.A Create a Vert.x application with Apache Maven

Command

Linux and MacOS
git clone https://github.com/vert-x3/
vertx-maven-starter.git PROJECT_NAME
cd PROJECT_NAME
./redeploy.sh
Windows
git clone https://github.com/vert-x3/
vertx-maven-starter.git PROJECT_NAME
cd PROJECT_NAME
redeploy.bat

Generate and Run
It generates the project structure and start
the application in redeploy mode: your
changes recompile and restart the
application. The started application
is accessible from http://localhost:8080

Description

2.C Create a Vert.x application with the Vert.x CLI

git clone https://github.com/vert-x3/
vertx-cli-starter.git PROJECT_NAME
cd PROJECT_NAME
./vertx.sh run src/io/vertx/starter/
MainVerticle.java --redeploy=”src/**/*”
--launcher-class=”io.vertx.core.Launcher”
Use vertx.bat on Windows

Generate and Run
It generates the project structure and start
the application in redeploy mode: your
changes recompile and restart the applica-
tion. The started application is accessible
from http://localhost:8080

http://localhost:8080
http://localhost:8080
http://localhost:8080

4

vertx.createHttpServer()
.requestHandler({ req ->
req.response().end(“Hello from
Groovy”) })
.listen(8080)

Groovy io.vertx::vertx-lang-groovy

VerticleLanguage Dependency to add to your project

public class MyHttpServer extends
AbstractVerticle {
@Override
public void start() throws Exception
{
vertx.createHttpServer()
.requestHandler(req -> req.
response()
.end(“Hello from Java”))
.listen(8080);
}
}

Java N/A (default, provided)

3.A Creating a verticle

 All the projects created with the given instructions have created a main verticle, implement-
ed in Java, that starts a HTTP server. Verticles can be implemented in any supported lan-
guage, and to add support for another language, add the indicated dependency to
your project:

3. Verticles

 Vert.x comes with a simple, scalable, actor-like deployment and concurrency model out of
the box. Verticles are chunks of code that get deployed and run by Vert.x. An application
would typically be composed of many verticle instances running in the same Vert.x instance
at the same time. Verticle instances communicate with each other by sending messages on
the event bus.
 Default verticles are executed on the Vert.x event loop and must never block. Vert.x en-
sures that each verticle is always executed by the same thread (never concurrently, hence
avoiding synchronization constructs).

Dependency management
You need to restart the application to reflect
the changes.

IDE support

Edit the vertx/vertx-stack.json to add,
remove or update your dependency.
Then, run:
./vertx.sh resolve

Import the project as a Java project. Add the
vertx/lib directory in your classpath.

Command Description

vertx.createHttpServer()
.requestHandler(function (req)
{
req.response().end(“Hello from
JavaScript”)
})
.listen(8080);

JavaScript io.vertx::vertx-lang-js

5

vertx.deployVerticle(
“verticles/my-verticle.groovy”,
[‘config’: [‘key’: ‘value’]]
)

vertx.deployVerticle(
“verticles/my-verticle.js”,
{“config”: {“key”: “value”}});

println(vertx.
getOrCreateContext().
config()[‘key’])

console.log(vertx.
getOrCreateContext()
.config()[“key”]);

Groovy

JavaScript

Verticle DeploymentLanguage

vertx.deployVerticle(
MyVerticle.class.getName(),
new DeploymentOptions()
.setConfig(new JsonObject()
.put(“key”, “value”)));

System.out.
println(config().
getString(“key”));

Java

3.C Configuring verticles

 When deploying a verticle, you can pass deployment options to configure things such as the
number of instances, or high-availability mode. You can also provide the verticle configura-
tion. (Vert.x uses JSON as configuration format.)

public class MainVerticle extends AbstractVerticle {
@Override
public void start() {
vertx.deployVerticle(MyVerticle.class.getName());
vertx.deployVerticle(“verticles/my-verticle.groovy”);
vertx.deployVerticle(“verticles/my-verticle.js”);
}
}

vertx.deployVerticle(“verticles/MyVerticle.java”
vertx.deployVerticle(“verticles/my-verticle.groovy”)
vertx.deployVerticle(“verticles/my-verticle.js”)

vertx.deployVerticle(“verticles/MyVerticle.java”);
vertx.deployVerticle(“verticles/my-verticle.groovy”);
vertx.deployVerticle(“verticles/my-verticle.js”);

Java

Groovy

JavaScript

VerticleLanguage

3.B Deploying verticles programmatically

 Verticles can be deployed programmatically from your code. This pattern is often used by a
main verticle deploying sub-verticles. Verticles deployed in this manner are identified using
the verticle file name. For a Java verticle, you can also use the fully qualified class name
(FQCN).

 Verticles can also have an optional stop method that is called when the verticle is unde-
ployed. The stop and corresponding start methods can also take a Future object as parameter
to start and stop asynchronously.

6

VerticleLanguage

public class MyHttpServer extends AbstractVerticle {
 @Override
 public void start() throws Exception {
 vertx.createHttpServer()
 .requestHandler(req -> req.response()
 .putHeader(“content-type”, “text/html”)
 .end(“<h1>Hello from Java</h1>”))
 .listen(8080, ar -> {
 if (ar.succeeded()) {
 System.out.println(“Server started on port “ + ar.result().
actualPort());
 } else {
 System.out.println(“Unable to start server “ + ar.cause().
getMessage());
 }
 });
 }
 }
}

Java

5.A HTTP Server

vertx.deployVerticle(
MyVerticle.class.getName(),
new DeploymentOptions()
.setConfig(new JsonObject()
.put(“key”, “value”)));

def taskId = vertx.setPeriodic(2000,
{ l -> println(“Run periodically”)})
//...
vertx.cancelTimer(taskId)

var taskId = vertx.setPeriodic(2000,
function (l) {
console.log(“Run periodically”)
});
//...
vertx.cancelTimer(taskId);

vertx.setTimer(1000, l
-> {
System.out.println(“Run
later”);
});

vertx.setTimer(1000,
{ l -> println(“Run
later”)})

vertx.setTimer(1000,
function (l) {
console.log(“Run
later”);
});

Groovy

JavaScript

Java

 Vert.x lets you execute delayed tasks and periodic tasks.

 This section contains examples to creates Vert.x HTTP servers and client.

4. Timer and periodic tasks

5. HTTP

Verticle DeploymentLanguage

7

public class MyHttpClientVerticle extends AbstractVerticle {
 @Override
 public void start() {
 vertx.createHttpClient().get(8080, “localhost”, “/”,
 response -> {
 System.out.println(“Response: “ + response.statusMessage());
 response.bodyHandler(buffer ->
 System.out.println(“Data: “ + buffer.toString())
);
 })
 .end();
 }
}

Java

vertx.createHttpServer()
 .requestHandler({ req ->
 req.response()
 .putHeader(“content-type”, “text/html”)
 .end(“<h1>Hello from Groovy</h1>”)
 })
 .listen(8080, { ar ->
 if (ar.succeeded()) {
 println(“Server started on port “ + ar.result().actualPort());
 } else {
 println(“Unable to start server “ + ar.cause().getMessage());
 }
})

vertx.createHttpServer()
 .requestHandler(function (req) {
 req.response().putHeader(“content-type”, “text/html”)
 .end(“<h1>Hello from JavaScript</h1>”)
 })
 .listen(8080, function(res, err) {
 if (err) {
 console.log(“Unable to start the HTTP server: “ + err.
getMessage());
 } else {
 console.log(“Server started on port “ + res.actualPort());
 }
 });

Groovy

JavaScript

5.B HTTP Client

VerticleLanguage

vertx.createHttpClient().get(8080, “localhost”, “/”, { resp ->
 println(“Response ${resp.statusCode()}”)
 resp.bodyHandler({ body ->
 println(“Data ${body}”)
 })
}).end()

Groovy

vertx.createHttpClient().get(8080, “localhost”, “/”, function (resp) {
 console.log(“Response “ + resp.statusCode());
 resp.bodyHandler(function (body) {
 console.log(“Data “ + body);
 });
}).end();

JavaScript

8

var eb = vertx.eventBus();
eb.consumer(“address”, function
(message) {
 console.log(“Received: “ +
message.body());
});

var eb = vertx.eventBus();
vertx.setPeriodic(1000, function (v)
{
 eb.send(“address”, “my message”);
});

JavaScript

 The event bus is the backbone of any Vert.x application. It allows the components compos-
ing your application to interact, regardless of the implementation language and their local-
ization. The event bus offers three methods of delivery: point to point, publish/subscribe, and
request-response. On the event bus, messages are sent to addresses. An address is a simple
String. Consumers listen for messages by registering a Handler on a specific address.

6. EventBus

vertx.eventBus().consumer(“address”,
 message ->
 System.out.println(“Received: “
 + message.body()));

vertx.deployVerticle(
“verticles/my-verticle.js”,
{“config”: {“key”: “value”}});

vertx.setPeriodic(1000,
v -> vertx.eventBus()
.send(“address”, “my message”));

vertx.setPeriodic(1000, { v ->
 vertx.eventBus().send(“address”,
 “my message”)
})

Java

Groovy

Sender Verticle (send a message every
second)

DeploymentLanguage

6.A Point to Point

vertx.eventBus().consumer(“address”,
 message ->
 System.out.println(“Received: “
 + message.body()));

vertx.setPeriodic(1000,
v -> vertx.eventBus()
.send(“address”, “my message”));

Java

6.B Publish/Subscribe

var eb = vertx.eventBus();
eb.consumer(“address”, function
(message) {
 console.log(“Received: “ +
message.body());
});

var eb = vertx.eventBus();
vertx.setPeriodic(1000, function (v)
{
eb.publish(“address”,
 “my broadcasted message”);
});

JavaScript

vertx.eventBus().consumer(“address”,
 { message ->
 println(“Received: ${message.
body()}”)
})

vertx.setPeriodic(1000, { v ->
 vertx.eventBus().publish(“address”,
 “my broadcasted message”)
})

Groovy

9

vertx.eventBus().consumer(“address”,
 { message ->
 println(“Received: ${message.
body()}”)
 message.reply(“my response”)
})

vertx.setPeriodic(1000, { v ->
 vertx.eventBus().send(“address”,
“my message”, { reply ->
 if (reply.succeeded()) {
println(“Response: ${reply.result().
body()}”)
 } else {
 println(“No reply”)
 }
 })
})

Groovy

vertx.eventBus().consumer(“address”,
 message -> {
 System.out.println(“Received: “
 + message.body());
 message.reply(“my response”);
 });

vertx.setPeriodic(1000,
 v -> vertx.eventBus()
 .send(“address”, “my message”,
 reply -> {
 if (reply.succeeded()) {
 System.out.println(“Response: “
 + reply.result().body());
 } else {
 System.out.println(“No reply”);
 }
 }));

Java

6.C Request-Response

Sender Verticle (send a message every
second)

DeploymentLanguage

var eb = vertx.eventBus();
eb.consumer(“address”,
function (message) {
 console.log(“Received: “
+ message.body());
 message.reply(“my
response”);
});

var eb = vertx.eventBus();
vertx.setPeriodic(1000,
function (v) {
 eb.send(“address”, “my
message”, function (reply,
reply_err) {
 if (reply_err == null) {
 console.log(“Response:
“
 + reply.body());
 } else {
 console.log(“No
reply”);
 }
 });
});

JavaScript

6.D Delivery Options

 When sending or publishing a message on the event bus, you can pass delivery options to
configure:
 - The send timeout (if the receiver does not reply to the message, the reply handler
 receives a failed result).
 - The message headers than can be used to pass metadata about the message content
 to the consumers. For example, you can pass the sending time or an identifier using
 a header.
 - The codec name to serialize the message on the event bus (only required for non
 supported types).

http://vertx.io/docs/vertx-core/dataobjects.html#DeliveryOptions

10

7. Executing blocking code

 As mentioned above, you must not run blocking code on the event loop. Vert.x provides
two ways to execute blocking code: vertx.executeBlocking and Worker verticles.

7.A The “executeBlocking” construct

 The executeBlocking construct lets you execute blocking code directly in your code. The
executeBlocking method takes two functions as parameters: the first one is run on a worker
thread; the second function is executed on the event loop once the first function has com-
pleted the provided Future object.

vertx.executeBlocking(
 { future ->
 // Run some blocking code on a worker thread
 // Complete or fail the future once done
 future.complete(“my result”)
 // Example of failure: future.fail(“failure cause”)
 },
 { ar ->
 // Run on the event loop
 if (ar.succeeded()) {
 println(ar.result())
 // The blocking has completed successfully
 } else {
 // The blocking code has failed
 }
 }
);

Groovy

vertx.<String>executeBlocking(
 future -> {
 // Run some blocking code on a worker thread
 // Complete or fail the future once done
 future.complete(“my result”);
 // Example of failure: future.fail(“failure cause”);
 },
 ar -> {
 // Run on the event loop
 if (ar.succeeded()) {
 // The blocking has completed successfully
 } else {
 // The blocking code has failed
 }
 }
);

Java

VerticleLanguage

Language

11

7.B Worker verticles

 A worker verticle is a specialized verticle that can run blocking code. Workers are not exe-
cuted on the Vert.x event loop, but instead by a worker thread. To mark a verticle as worker,
use deployment options as follows:

VerticleLanguage

vertx.executeBlocking(
 function (future) {
 // Run some blocking code on a worker thread
 // Complete or fail the future once done
 future.complete(“my result”);
 // Example of failure: future.fail(“failure cause”);
 },
 function (res, err) {
 // Run on the event loop
 if (err == null) {
 console.log(res);
 // The blocking has completed successfully
 } else {
 // The blocking code has failed
 }
 }
);

JavaScript

public class MainVerticle extends AbstractVerticle {

@Override
public void start() {
 vertx.deployVerticle(MyWorkerVerticle.class.getName(),
 new DeploymentOptions().setWorker(true));
 }
}

vertx.deployVerticle(“verticles/MyWorkerVerticle.java”, [worker: true])

vertx.deployVerticle(“verticles/MyWorkerVerticle.java”, [worker: true])

Java

Groovy

JavaScript

8. Executing Vert.x applications

 Both the vertx CLI and the fat-jar created in the generated projects use the same Launcher.
This Launcher is convenient but not mandatory --- alternatively, you can implement your own
main class.

 When using the Launcher, the execution can be configured:

Parameter Description Example with the

vertx CLI

Example with a fat jar

-cluster Enable cluster mode vertx run my-
verticle -cluster

vertx run my-
verticle -cp .:./
conf

java -jar my-fat.jar
-cluster

java -jar my-fat.jar
-cp .:./conf

Add items to the
classpath

-cp

12

start Start an application
in background

vertx start
my-verticle -id
my-service

vertx list

vertx run my-
verticle --conf=my-
conf.json

java -jar my-fat.jar
--conf=my-conf.json

java -jar my-fat.jar
start -id my-service

java -jar my-fat.jar
list

List all Vert.x
applications
launched in
background

Configure the main
verticle with the
given json file

list

--conf=x

 When using the Launcher, the execution can be configured:

vertx run my-
verticle -cluster

vertx run my-
verticle -cp .:./
conf

java -jar my-fat.
jar -ha

java -jar my-fat.jar
--instances=2

Create as many
instances as
specified of the
main verticle

launch the vert.x
instance in high-
availability mode

--instances=x

-ha

Parameter Description Example with the

vertx CLI

Example with a fat jar

vertx stop
my-service

java -jar my-fat.jar
stop my-service

Stop an application
launched in
background

stop

 Learn more about this ecosystem on:
 - http://vertx.io
 - http://vertx.io/blog
 - http://vertx.io/materials/

10. About the author

 Clement Escoffier is Principal Software Developer at Red Hat. Clement has had several
professional lives, from academic positions to management. He has experience with many
domains and technologies, such as: OSGi, mobile, continuous delivery, and devops. Clement
is an active contributor on many open source projects such as Apache Felix, iPOJO, Wisdom
Framework, and obviously, Eclipse Vert.x.

9. Further learning

 This cheat sheet covers just a small part of the Vert.x ecosystem --- Vert.x also provides
components such as Vert.x Web to build modern web applications, a set of bridges and clients
to interact with AMQP, MQTT, Kafka and legacy applications (using Apache Camel). It provides
components to build microservices (service discovery, circuit breaker…), RPC interactions,
and more.

http://vertx.io
http://vertx.io/blog
http://vertx.io/materials

